คู่อันดับ (Order Pair) เป็นการจับคู่สิ่งของโดยถือลำดับเป็นสำคัญ เช่น
คู่อันดับ a, b จะเขียนแทนด้วย (a, b) เรียก a ว่าเป็นสมาชิกตัวหน้า
และเรียก b ว่าเป็นสมาชิกตัวหลัง
วันอาทิตย์ที่ 14 ธันวาคม พ.ศ. 2557
สมบัติของการไม่เท่ากัน
สมบัติของการไม่เท่ากัน กำหนดให้ a, b, c เป็นจำนวนจริงใดๆ
1. สมบัติการถ่ายทอด ถ้า a > b และ b > c แล้ว a > c
2. สมบัติการบวกด้วยจำนวนที่เท่ากัน ถ้า a > b แล้ว a + c > b+ c
3. จำนวนจริงบวกและจำนวนจริงลบ
a เป็นจำนวนจริงบวก ก็ต่อเมื่อ a > 0
a เป็นจำนวนจริงลบ ก็ต่อเมื่อ a < 0 อ่านเพิ่มเติม
1. สมบัติการถ่ายทอด ถ้า a > b และ b > c แล้ว a > c
2. สมบัติการบวกด้วยจำนวนที่เท่ากัน ถ้า a > b แล้ว a + c > b+ c
3. จำนวนจริงบวกและจำนวนจริงลบ
a เป็นจำนวนจริงบวก ก็ต่อเมื่อ a > 0
a เป็นจำนวนจริงลบ ก็ต่อเมื่อ a < 0 อ่านเพิ่มเติม
จำนวนจริง
เซตของจำนวนจริงประกอบด้วยสับเซตที่สำคัญ ได้แก่
- เซตของจำนวนนับ/ เซตของจำนวนเต็มบวก เขียนแทนด้วย I
I
= {1,2,3…}
- เซตของจำนวนเต็มลบ เขียนแทนด้วย I
- เซตของจำนวนเต็ม เขียนแทนด้วย I
I
= { …,-3,-2,-1,0,1,2,3…} อ่านเพิ่มเติม
การให้เหตุผลแบบนิรนัย
การให้เหตุผลแบบนิรนัย เป็นการนำความรู้พื้นฐานซึ่งอาจเป็นความเชื่อ
ข้อตกลง กฎ หรือบทนิยาม ซึ่งเป็นสิ่งที่รู้มาก่อน
และยอมรับว่าเป็นความจริงเพื่อหาเหตุผลนำไปสู่ข้อสรุป
เป็นการอ้างเหตุผลที่มีข้อสรุปตามเนื้อหาสาระที่อยู่ภายในขอบเขตของข้ออ้างที่กำหนด อ่านเพิ่มเติม
การให้เหตุผลแบบอุปนัย
การให้เหตุผลแบบอุปนัย เป็นวิธีการสรุปผลมาจากการค้นหาความจริงจากการสังเกตหรือการทดลองหลายครั้งจากกรณีย่อยๆ
แล้วนำมาสรุปเป็นความรู้แบบทั่วไป
การหาข้อสรุปหรือความจริงโดยใช้วิธีการให้เหตุผลแบบอุปนัยนั้น ไม่จำเป็นต้องถูกต้องทุกครั้ง เนื่องจากการให้เหตุผลแบบอุปนัยเป็นการสรุปผลเกิดจากหลักฐานข้อเท็จจริงที่มีอยู่ อ่านเพิ่มเติมเอกภพสัมพัทธ์
เอกภพสัมพัทธ์ คือ
เซตที่ประกอบด้วยสมาชิกทั้งหมดของสิ่งที่เราต้องการจะศึกษา
สามารถเขียนแทนได้ด้วยสัญลักษณ์ u
เอกภพสัมพัทธ์
(Relative Universe) ในการพูดถึงเรื่องใดก็ตามในแง่ของเซต
เรามักมีขอบข่ายในการพิจารณาสมาชิกของเซตที่จะกล่าวถึง อ่านเพิ่มเติม
เซต(Sets)
เซต เป็นคำที่ใช้บ่งบอกถึงกลุ่มของสิ่งต่างๆ
และเมื่อกล่าวถึงกลุ่มใดแน่นอนว่าสิ่งใดอยู่ในกลุ่ม สิ่งใดไม่อยู่ในกลุ่ม เช่น
เซตสระในภาษาอังกฤษ หมายถึง กลุ่มของอังกฤษ a,
e, i, o และ u
เซตของจำนวนนับที่น้อยกว่า
10 หมายถึง กลุ่มตัวเลข 1,2,3,4,5,6,7,8,และ9
สิ่งที่ในเชตเรียกว่า สมาชิก ( element หรือ members )อ่านเพิ่มเติม
สมัครสมาชิก:
บทความ (Atom)