วันอาทิตย์ที่ 14 ธันวาคม พ.ศ. 2557

ความสัมพนธ์และฟังก์ชัน


คู่อันดับ (Order Pair) เป็นการจับคู่สิ่งของโดยถือลำดับเป็นสำคัญ เช่น คู่อันดับ a, b จะเขียนแทนด้วย (a, b) เรียก a ว่าเป็นสมาชิกตัวหน้า และเรียก b ว่าเป็นสมาชิกตัวหลัง
(การเท่ากับของคู่อันดับ) (a, b) = (c, d) ก็ต่อเมื่อ a = c และ b = d อ่านเพิ่มเติม
                                       

สมบัติของการไม่เท่ากัน

สมบัติของการไม่เท่ากัน  กำหนดให้ a, b, c เป็นจำนวนจริงใดๆ 

       1. สมบัติการถ่ายทอด     ถ้า a > b และ b > c แล้ว a > c    

      2. สมบัติการบวกด้วยจำนวนที่เท่ากัน ถ้า a > b แล้ว a + c > b+ c

      3. จำนวนจริงบวกและจำนวนจริงลบ
            a เป็นจำนวนจริงบวก ก็ต่อเมื่อ a > 0
            a เป็นจำนวนจริงลบ ก็ต่อเมื่อ a < 0 อ่านเพิ่มเติม
                                            

จำนวนจริง


เซตของจำนวนจริงประกอบด้วยสับเซตที่สำคัญ  ได้แก่
เซตของจำนวนนับ/ เซตของจำนวนเต็มบวก เขียนแทนด้วย  I
                   I = {1,2,3…}
เซตของจำนวนเต็มลบ  เขียนแทนด้วย  I
เซตของจำนวนเต็ม เขียนแทนด้วย I
                   I = { …,-3,-2,-1,0,1,2,3…} อ่านเพิ่มเติม
                                          

การให้เหตุผลแบบนิรนัย


การให้เหตุผลแบบนิรนัย เป็นการนำความรู้พื้นฐานซึ่งอาจเป็นความเชื่อ ข้อตกลง กฎ หรือบทนิยาม ซึ่งเป็นสิ่งที่รู้มาก่อน และยอมรับว่าเป็นความจริงเพื่อหาเหตุผลนำไปสู่ข้อสรุป เป็นการอ้างเหตุผลที่มีข้อสรุปตามเนื้อหาสาระที่อยู่ภายในขอบเขตของข้ออ้างที่กำหนด อ่านเพิ่มเติม
                                       

การให้เหตุผลแบบอุปนัย


การให้เหตุผลแบบอุปนัย เป็นวิธีการสรุปผลมาจากการค้นหาความจริงจากการสังเกตหรือการทดลองหลายครั้งจากกรณีย่อยๆ แล้วนำมาสรุปเป็นความรู้แบบทั่วไป
           การหาข้อสรุปหรือความจริงโดยใช้วิธีการให้เหตุผลแบบอุปนัยนั้น  ไม่จำเป็นต้องถูกต้องทุกครั้ง  เนื่องจากการให้เหตุผลแบบอุปนัยเป็นการสรุปผลเกิดจากหลักฐานข้อเท็จจริงที่มีอยู่  อ่านเพิ่มเติม
                                                       

เอกภพสัมพัทธ์


เอกภพสัมพัทธ์ คือ เซตที่ประกอบด้วยสมาชิกทั้งหมดของสิ่งที่เราต้องการจะศึกษา สามารถเขียนแทนได้ด้วยสัญลักษณ์ u
           เอกภพสัมพัทธ์ (Relative Universe) ในการพูดถึงเรื่องใดก็ตามในแง่ของเซต  เรามักมีขอบข่ายในการพิจารณาสมาชิกของเซตที่จะกล่าวถึง อ่านเพิ่มเติม
                                   
                                       

เซต(Sets)


เซต  เป็นคำที่ใช้บ่งบอกถึงกลุ่มของสิ่งต่างๆ และเมื่อกล่าวถึงกลุ่มใดแน่นอนว่าสิ่งใดอยู่ในกลุ่ม สิ่งใดไม่อยู่ในกลุ่ม เช่น
       เซตสระในภาษาอังกฤษ  หมายถึง  กลุ่มของอังกฤษ  a, e, i, o และ u
       เซตของจำนวนนับที่น้อยกว่า 10 หมายถึง  กลุ่มตัวเลข 1,2,3,4,5,6,7,8,และ9
        สิ่งที่ในเชตเรียกว่า  สมาชิก  ( element หรือ members )อ่านเพิ่มเติม